Concerto N.17 em G maior -K 453-30min.
Maria João Pires
O que é Energia, Bio-energia e campo Bio-energético?
O que é Energia, Bio-energia e campo Bio-energético?
O trabalho bio-energético deve ser observado de uma perspectiva não linear; energia não é medida ou cabe no conceito de espaço e tempo. Energia está em tudo, ela não reconhece distâncias, está presente aqui e agora, assim como lá – onde quer que seja! Ela também não reconhece limite de tempo; acontecimentos que ocorreram em 1700 criaram uma atmosférica energética que permanece até o presente e, se pudéssemos acessá-la, diríamos que os fatos estão acontecendo naquela mesma hora.
A partir deste mesmo princípio pode-se dizer que acontecimentos ocorridos em 1700 na França podem ser sentidos como ocorridos no Brasil em 2010, se a pessoa se conecta com essa situação.
Outro exemplo mais comum é quando alguém está relatando uma dor física causada por uma doença na infância (20 – 30 anos atrás) e parece que nós sentimos isso em nosso corpo, como se fosse nossa e naquele exato momento.
O que aconteceu foi uma conexão energética, ou seja, nós acessamos aquele registro no corpo da pessoa com quem falamos através da nossa atenção e da regressão de memória do expositor. Essa conexão energética desencadeia as sensações experimentadas 20 ou 30 anos atrás em pessoas que estão ouvindo a história sendo contada.
Em maior escala, a mesma coisa ocorre com nossos pensamentos; a todo momento criamos energias / vibrações do bem, do mal, da escassez, da abundância, do amor, do ódio…. “onde estiver nosso coração, aí está o nosso tesouro” (Jesus).
A nossa conexão / antena pessoal vai atrair e criar o nosso universo pessoal / nossa vida, respondendo à nossa própria vibração / energia. Mude seu pensamento e sua vida se transformará.
Minha opinião pessoal é que o planeta terra atingiu uma fase vibratória muito diferente dos últimos 50 anos e os vários acontecimentos físicos – políticos, sociais, religiosos, econômicos – são consequências da energia / vibração sustentada pelo consciente e inconsciente coletivo e todos aqueles que estiverem e se mantiverem naquele padrão vibratório serão afetados pelo processo pelo qual se passa o planeta.
A miséria, a fome, o crime representam nossa miséria pessoal, nossa escassez mental, nosso oportunismo social, tirando vantagem para benefício próprio em detrimento do bem-estar do outro.
A falta de educação e consideração das pessoas representam o estado de ignorância e dormência em nos encontramos e claramente gera no mundo o egoísmo que nos consome na atualidade.
Poucas pessoas tiveram coragem de sair desse ciclo vicioso e criar a riqueza e abundância em todos os aspectos de sua vida e puderam se tornar responsáveis pelo seu próprio destino; em vez de culpar o outro (governo, país, político, pai / mãe, vizinho, saúde, vida, Deus, carma, etc…), essas pessoas se tornaram responsáveis pela própria vida e tomaram as rédeas de seus rumos, manifestando aquilo que todos nós temos direito: saúde, riqueza, relações afetivas e amizades de mútuo apoio, saudáveis e puderam sair da mesmice em que a massa humana criou para si mesma e vai consequentemente ter que responder, pois nenhum de nós será “inocentado” da responsabilidade daquilo que criamos… “quem tiver olhos de ver que veja, quem tiver ouvidos de ouvir que ouça…” (Jesus).
Essa breve introdução responde a questão “o que é energia?”: é algo vivo e visível para os dotados de vidência. Está presente em absolutamente tudo no universo, desde o mais minúsculo valor atômico até o maior ser conhecido.
Barbara Brennan, em “Mãos de Luz”, diz que “massa não é mais do que uma forma de energia. A matéria é simplesmente energia cristalizada ou desacelerada. Nossos corpos são energia.” Ela ainda diz que uma importante consequência da relatividade de Einstein é a compreensão de que matéria e energia são intercambiáveis.
Bio-energia ou campo Bio-energético é usado como a energia que está em volta / dentro dos seres vivos, mas sem esquecer que os seres inanimados também são dotados de energia, o que nossos olhos ainda cegos às dinâmicas energéticas não percebem.
Dessa forma tudo e todos são dotados dessa força vibracional, dessa presença divina que é presente em tudo e todos.
Energia
Definir energia não é algo trivial, e alguns autores chegam a argumentar que "a ciência não é capaz de definir energia, ao menos como um conceito independente". Contudo, mesmo para estes autores, "embora não se saiba o que é energia, se sabe o que ela não é", em clara alusão aos demais significados da palavra difundidos em senso comum, não obstante bem distintos daqueles encontrados no meio científico [Ref. 1]. Este artigo foca a acepção científica da palavra energia.
Em ciência, energia (do grego έν dentro, εργον[1] trabalho, obra, dentro do trabalho[2]) refere-se a uma das duas grandezas físicas necessárias à correta descrição do inter-relacionamento - sempre mútuo - entre dois entes ou sistemas físicos. A segunda grandeza é o momento. Os entes ou sistemas em interação trocam energia e momento, mas o fazem de forma que ambas as grandezas sempre obedeçam à respectiva lei de conservação.
É bem difundido - não só em senso comum - que energia associa-se geralmente à capacidade de produzir um trabalho ou realizar uma ação [Ref. 2]. Em verdade, a etimologia da palavra tem origem no idioma grego, onde εργος (ergos) significa "trabalho". Embora não completamente abrangente no que tange à definição de energia, esta associação não se mostra por completo fora do domínio científico, e, em princípio, qualquer ente que esteja a trabalhar - por exemplo, a mover outro objeto, a deformá-lo ou a fazê-lo ser percorrido por uma corrente elétrica - está a "transformar" parte de sua energia, transferindo-a ao sistema sobre o qual realiza o trabalho.
O conceito de energia é um dos conceitos essenciais da Física. Nascido no século XIX, desempenha papel crucial não só nesta cadeira como em todas as outras disciplinas que, juntas, integram a ciência moderna. Notoriamente relevante na Química e na Biologia, e mesmo em Economia e outras áreas de cunho social, a energia se destaca como pedra fundamental, uma vez que o comércio de energia move bilhões anualmente.
Pela sua importância, há na Física uma subárea dedicada quase que exclusivamente ao estudo da energia: a termodinâmica. Em termodinâmica, o trabalho é uma entre as duas possíveis formas de transferência de energia entre sistemas físicos; a outra forma é o calor.
Definição científica de energia
O conceito científico de energia só pode ser entendido mediante a análise de dois entes ou sistemas físicos em interação. Quando dois sistemas físicos interagem entre si, mudanças nos dois sistemas ocorrem. A interação entre sistemas físicos naturais dá-se, em acordo com os resultados empíricos, sempre de forma muito regular, sendo uma mudança específica em um deles sempre acompanhada de uma mudança muito específica no outro, embora estas mudanças possam certamente ser de naturezas muito ou mesmo completamente distintas.Energia
Regularidades observadas na natureza expressam-se dentro da ciência mediante o estabelecimento das denominadas leis científicas. No que se refere à forma com que dois entes físicos interagem entre si, na busca da correta correlação entre as mudanças observadas nos sistemas viu-se a necessidade de estabelecer-se, para o correto cumprimento da tarefa, não apenas uma mas duas grandezas físicas primárias independentes, cada qual associada à uma lei de conservação própria, leis estas inerentes a todos os sistemas físicos e que combinadas, permitem a correta descrição dos mesmos. Tais grandezas físicas são denominadas energia e momento, e as leis científicas que as governam denominam-se respectivamente lei da conservação da energia [Nota 1] e a lei da conservação do momento linear. Ao passo que o momento é uma grandeza vetorial, a sua contra-parte aqui descrita é uma grandeza escalar.Formas de energia
Salto São Francisco, no Paraná. A energia potencial é a energia associada a um determinado corpo devido à posição que este ocupa. A água no alto do paredão tem maior energia potencial do que quando encontra-se embaixo. A energia cinética é a energia associada ao movimento deste corpo: água em movimento possui energia cinética; parada, não. Há ainda a energia radiante, que permitiu que esta fotografia fosse tirada.Apesar de não se restringir a isso, a energia pode ser entendida como a capacidade de realizar trabalho, a capacidade de colocar as coisas em movimento, e movimento é algo fundamental no nosso dia-a-dia.
As sociedades humanas dependem cada vez mais de um elevado consumo energético para sua subsistência. Para isso foram sendo desenvolvidos ao longo da história diversos processos de transformação, transporte e armazenamento de energia. Na realidade, em acordo com o expresso pela primeira lei da termodinâmica e pelos conceitos de energia interna e energia térmica, só existem, além da energia pura radiante, duas formas de energia armazenadas em um sistema: a potencial e a cinética. No cotidiano entretanto estas acabam recebendo nomes específicos que geralmente fazem referência explícita à natureza do sistema envolvido no armazenamento ou às plantas industriais onde estas são levadas à transformação.
Assim tem-se a energia hidráulica como sinônimo de energia potencial gravitacional ou mesmo cinética armazenada nas águas de uma represa hidroelétrica, que conforme o nome diz, cuida da conversão de energia "hidráulica" em energia potencial elétrica; a energia nuclear para a energia potencial associada à interação nuclear forte, ou até mesmo, em senso comum, para a energia elétrica produzida em termoelétricas cujas fontes de energia térmica sejam reatores nucleares; a energia eólica associada à energia cinética de movimento das massas de ar (ventos); a energia solar associada à radiação eletromagnética com origem no Sol e energia geotérmica associada à energia térmica do interior da terra.
Energia potencial
Ver artigo principal: Energia potencial
A energia potencial elétrica para o sistema onde uma grande quantidade de cargas elétricas encontra-se acumuladas nas nuvens é maior do que a energia potencial elétrica associada ao sistema onde estas cargas encontram-se no solo. Satisfeitas as condições necessárias, uma corrente elétrica estabelece-se através da atmosfera, e estas cargas deslocam-se da nuvem para o solo. A energia potencial liberada neste processo converte-se, entre outras, em energia radiante - que dá origem à luz visível no evento - e em energia térmica - que aquece o ar nas proximidades da corrente. Parte desta energia acaba dá origem a uma onda de choque, que propaga-se pela atmosfera formando o trovão.
É a energia que um objeto possui em virtude da posição relativa que encontra-se dentro do sistema. Um martelo levantado, uma mola comprimida ou esticada ou um arco tensionado de um atirador, todos possuem energia potencial. Esta energia está pronta para ser transformada em outras formas de energia e será transformada, mediante a realização de trabalho, tão logo a configuração espacial do sistema que contém a energia potencial mude:
quando o martelo cair, pregará um prego; a mola, quando solta, fará andar os ponteiros de um relógio; o arco disparará uma flecha. Assim que ocorrer algum movimento, a energia potencial da fonte diminui, enquanto se transforma nos casos citados em energia de movimento (energia cinética). Ao contrário, levantar o martelo, comprimir a mola e esticar o arco são processos onde a energia cinética transforma-se em energia potencial.
Normalmente atribui-se a energia potencial ao objeto que ocupa uma dada posição dentro do sistema ao qual pertence, como feito anteriormente.
Ressalva-se explicitamente entretanto que a energia não pertence exclusivamente ao objeto como parece à primeira vista. Esta encontra-se em verdade armazenada no sistema como um todo, composto pelo objeto e suas demais partes. Muitas vezes não faz-se referência explícita ao resto do sistema, mas este sempre figura, se não de forma explicita, pelo menos adequadamente substituído por um campo bem determinado, que responde pela interação do objeto com o sistema em questão, mesmo que o faça de forma implícita. Fala-se assim da energia potencial gravitacional de um avião - no campo de gravidade da Terra -, de energia potencial de um elétron - no campo elétrico gerado pelos pólos de uma bateria -, e assim por diante.
Uma consideração importante sobre a energia potencial refere-se à sua medida. Não se determina fisicamente o valor absoluto da energia potencial de um sistema em uma dada configuração, mesmo porque isto não faria muito sentido. O que é fisicamente mensurável é a variação da energia potencial observada quando o sistema muda sua configuração, indo de um estado inicial para um estado final. Nestes termos é usual atribuir-se uma energia potencial nula (zero) para o sistema em uma dada configuração espacial inicialmente especificada, e então medir-se a energia potencial de qualquer outra configuração do sistema em relação a este estado de referência, sendo a energia potencial de uma configuração qualquer igual à energia que teve que ser transferida ao sistema para levá-lo do estado de referência até esta configuração final, mantidas as energias cinéticas associadas às partes integrantes do sistema constantes de forma que toda a energia entregue ao sistema seja inteiramente armazenada na forma de energia potencial.
A energia potencial é assim dependente de um referencial a se escolher no início do problema - e que deve ser mantido durante todo o problema sobre risco de obter-se uma solução incorreta. A energia potencial de uma lâmpada em relação ao piso de um apartamento de cobertura é certamente diferente da energia potencial da mesma lâmpada se a referência adotada for o solo, em nível do andar térreo.
No cotidiano encontram-se presentes diversos tipos de energia potencial, dos quais se destacam: a elástica, a gravitacional e a elétrica.
Energia potencial gravitacional
As cônicas. Estudadas pela matemática, aparentemente em nada têm a ver com a energia. Entretanto satélites, planetas, asteróides, cometas e qualquer outro objeto que se mova sob ação exclusiva da gravidade têm suas trajetórias descritas por uma destas curvas. Se a energia mecânica de um corpo - a soma de sua energia potencial gravitacional e cinética - é negativa, este encontra-se confinado ao sistema, e por tal descreve uma trajetória fechada, uma órbita circular ou elíptica (a circunferência também é uma elipse, com excentricidade nula). Se a energia mecânica do objeto for nula ou positiva, este não está confinado ao sistema: sua trajetória não é fechada, e este escapa para os confins do universo, nunca retornando. Se sua energia mecânica é maior do que zero, este o fará em uma trajetória hiperbólica; caso seja exatamente zero, sua trajetória será parabólica [Ref. 5]. A reta também é uma cônica; semi-retas são também trajetórias possíveis em qualquer caso, mas estas alinham-se com a massa central, o que pode resultar em colisão.A energia potencial gravitacional entre duas massas passíveis de serem tratadas como massas puntuais é fornecida pela Teoria da gravitação universal, sendo expressa pela relação:
onde m1 e m2 são as respectivas massas das partículas, r a distância entre elas, e G a Constante gravitacional universal (cuja função é estabelecer as unidades a se usarem na expressão). Nesta expressão o sistema de referência para o qual a energia potencial é definida como nula é aquele composto pelas massas infinitamente afastadas. Como a força de gravidade é sempre atrativa, a energia potencial para duas massas juntas é sempre menor do que para as mesmas massas separadas: a energia potencial é, assim, negativa para qualquer par de massas separadas por uma distância mensurável (não infinita).
Isaac Newton demonstrou de forma muito elegante, através do desenvolvimento do cálculo integral e diferencial, que para interações como a gravitacional e a elétrica - que dependem do inverso do quadrado da distância - distribuições esfericamente simétricas e homogêneas de massa ou carga podem ser, para todos os efeitos externos à estas, consideradas como se fossem partículas puntuais situadas nos centros das esferas, sendo a massa ou a carga destas partículas iguais à massa ou carga totais presentes nestas esferas [Ref. 7] [Ref. 8]. Dai o uso do raio da Terra para calcular-se o campo gravitacional em sua superfície. Pelo mesmo motivo a Terra pode ser considerada um excelente terra elétrico. Tal comportamento também é facilmente demonstrado através da aplicação da Lei de Gauss aos sistemas em questão [Ref. 9], sendo conhecido por "teorema das cascas".
A energia potencial de interação entre dois objetos quaisquer do dia-a-dia é, em virtude dos pequenos valores das duas massas envolvidas, muito pequena, sendo desprezível para qualquer problema prático.
A energia potencial gravitacional é particularmente importante quando um objeto é muito massivo: a Terra por exemplo. A energia potencial gravitacional de um objeto nas proximidades da superfície da Terra é proporcional à altura (h) deste corpo - medida, conforme já exposto, em relação a um dado nível de referência previamente escolhido para o qual atribui-se uma energia potencial zero, sendo este agora o nível do solo no local em questão e não o infinito, como no caso anterior. Nestes termos a energia potencial de um objeto pode ser calculada pela expressão:
Energia potencial nuclear
Convém abrir-se esta seção com algumas considerações importantes apresentadas por Robert Eisberg em um famoso livro didático de sua autoria [Ref. 3]:" Apesar de dispormos atualmente de um conjunto bastante completo sobre as forças nucleares, contata-se que elas são demasiadamente complicadas, não sendo possível até agora usar este conhecimento para produzir uma teoria ampla dos núcleos. Em outras palavras, nós não podemos explicar todas as propriedades dos núcleos em função das propriedades das forças nucleares que atuam sobre seus prótons e nêutrons. Existem entretanto diversos modelos ... Cada um deles pode explicar um certo número limitado de propriedades nucleares ..." Ainda encontra-se no mesmo livro: " Uma diferença profunda entre o estudo experimental dos núcleos e dos átomos decorre da diferença entre suas energias características.
A energia característica dos núcleos é da ordem de 1 Mev [Nota 7]... Veremos um pouco mais à frente que esta mesma ordem de grandeza caracteriza a energia de ligação de um próton ou nêutron em um núcleo típico assim como a energia de separação entre seu estado fundamental e o primeiro estado excitado. A energia característica dos átomos é da ordem de 1 eV." , mil vezes menor, portanto.
Em processos que levam à fissão dos núcleos deste material uma porção da energia potencial nuclear é convertida em energia térmica, entre outras. A energia liberada pela fissão de um único átomo deste elemento é ordens de grandeza maior do que a energia que seria por este liberada caso este átomo participasse de qualquer reação químicas concebível.
Ressalvas acima consideradas, define-se energia nuclear como a energia potencial associada à posição relativa dos nucleôns [Nota 8] um em relação aos outros em virtude da interação nuclear forte que os mantém unidos no núcleo atômico, definição razoável ao se considerar os modelos para os núcleos propostos, a citar: o modelo nuclear da gota líquida, o modelo do gás de fermi, o modelo de camadas, o modelo coletivo, e outros.
A força nuclear forte, ao contrário da elétrica e da gravitacional, apesar de atrativa é uma força de curto alcance: possui um valor extremamente alto se comparado à elétrica quando dois nucleôns estão a uma distância curta e decai rapidamente a zero se estes se afastam além de uma certa distância limite. "ela atua de maneira apreciável somente em uma distância inferior a 10F" (1F = 1fermi = 10-15m, aproximadamente o raio de um próton ou nêutron). Considerando-se o sistema com os nucleôns "infinitamente" separados como referencia para a medida da energia potencial nuclear (zero neste caso), isto traduz-se em uma energia potencial negativa muito elevada para o núcleo formado.
A energia potencial nuclear negativa confina os prótons e nêutrons no interior do núcleo mesmo sob a intensa repulsão elétrica experimentada pelos prótons devido à sua proximidade pois, neste âmbito, a energia potencial nuclear é, em módulo, muito superior à energia potencial elétrica - positiva - associada aos nucleôns carregados. A energia potencial elétrica liberada caso um próton venha a escapar do núcleo sob a ação da força elétrica não é capaz de compensar o aumento na energia potencial nuclear associado a esta fuga, isto em situações comuns, pelo menos [Nota 9].
"Experiências recentes envolvendo espalhamento de prótons por prótons mostra que o alcance das forças nucleares é da ordem de 2F e que o valor de energia associada à força atrativa é aproximadamente 10 vezes maior do que a energia coloumbiana [Nota 10] quando os dois prótons se encontram separados por esta distância".
Variações nas energias potenciais nucleares ocorrem quando o núcleo participa de uma reação nuclear. As energias liberadas neste processo são ordens de grandeza maiores do que as liberadas a partir de variações nas energias químicas associadas à eletrosfera deste átomo quando este participa de uma reação química.
Energia cinética
Ver artigo principal: Energia cinética
Uma velha locomotiva a vapor transforma energia química em energia térmica, e posteriormente energia térmica em energia cinética translacional (as rodas, além da translacional, também têm energia cinética rotacional). A combustão de madeira ou carvão na fornallha é uma reacção química que liberacalor à caldeira, obtendo-se assim vapor que dá energia à locomotiva.É a energia que um corpo massivo em movimento possui devido à sua velocidade. Uma questão importante a levantar-se aqui é que a energia cinética é, em virtude da relatividade do movimento, fortemente dependente do referencial adotado para seu cálculo. Para um observador fixo ao solo, o motorista de um ônibus em movimento - assumido um movimento uniforme por simplicidade - está animado com uma velocidade , e por tal encontra-se dotado com uma energia cinética não nula. Contudo, para um passageiro sentado no banco do mesmo ônibus, o mesmo motorista não encontra-se animado, e sendo sua velocidade relativa a este referencial nula, sua energia cinética também deve sê-lo. Para o passageiro no banco do ônibus é o observador no solo que encontra-se dotado com energia cinética, e não o motorista.
Contudo, ao contrário do que a primeira impressão possa sugerir, não há, em vista do princípio da conservação da energia, necessária correspondência entre os valores destas energias, justamente por terem sido medidas em diferentes referenciais.
A conservação da energia sempre é observada em um mesmo referencial, qualquer que seja o referencial inercial escolhido, contudo seus valores absolutos são altamente dependentes do referencial escolhido, e a lei da conservação da energia não implica que estes valores sejam diretamente compatíveis com as mudanças de referencial que por ventura venham a se realizar durante a solução do problema em consideração.
A expressão para calcular-se a energia cinética mostra-se também dependente do escopo em consideração, sendo relativamente simples na mecânica clássica e um pouco mais complicada no âmbito da relatividade restrita ou teorias mais avançadas. Em mecânica clássica há a energia cinética translacional, associada à translação de uma partícula ou do centro de massa de um sistema, e a energia cinética rotacional, associada à rotação de um corpo extenso em torno de um eixo de rotação que passe pelo centro de massa deste. Contudo, antes de entrar-se diretamente em considerações quantitativas sobre estas, é valido falar-se um pouco sobre uma forma de energia cinética que não encontra-se diretamente associada à translação do centro de massa de um sistema ou rotação em torno deste centro, mas sim presa dentro de um sistema na forma de energia cinética associada à agitação térmica das partículas que o integram: a energia térmica.
Energia térmica
A energia térmica é, no fundo, energia cinética. A distinção entre "energia térmica" e "energia cinética" é necessária apenas em virtude de escala. Para sistemas encarados explicitamente a partir de cada uma das partículas que o compõem, partículas aqui em acepção de constituintes os mais básicos da matéria, só há energia cinética, a saber a translacional, explicitamente determinada para cada partícula. Nesta escala e apenas nesta escala "energia" é aceitavelmente definida como a capacidade de produzir trabalho.Entretanto, para sistemas (corpos) macroscópicos compostos por um gigantesco amontoado destas agora "invisíveis" partículas - os estudados pela termodinâmica - é conveniente e em verdade necessário distinguir entre a parcela de energia cinética total das partículas microscópicas não associada à translação do sistema - a chamada energia térmica (microscópica), esta não diretamente perceptível em escala macroscópica - e a parcela desta energia que encontra-se associada à translação ou mesmo rotação do sistema como um todo, ou seja, à translação do centro de massa do sistema ou rotação do sistema em torno deste, esta diretamente perceptível em escala macroscópica. Estas últimas são a energia cinética de translação e rotação conforme abaixo definidas para os corpos clássicos (ou para os "imaginados" como macroscópicos).
Em termodinâmica a transferência de energia cinética ou a sua conversão em energia potencial ou de potencial nesta implicam visivelmente em trabalho: qualquer variação de energia cinética (doravante sempre macroscópica) sempre implica trabalho; a transformação de energia potencial ou cinética (de energia mecânica) em térmica também é feita a princípio mediante trabalho (doravante sempre macroscópico), mas este trabalho, ao aumentar a energia térmica do sistema, implica sua "conversão" imediata em calor, sendo o calor uma resultante direta da transferência de energia térmica dentro do sistema ou mesmo entre este e outros sistemas vizinhos que ocorre em virtude da diferença de temperaturas estabelecida pelo acréscimo de energia térmica no dado ponto do sistema envolvido no trabalho em questão (em palavras mais simples, o atrito "aquece"). Calor, na prática, implica sempre em aumento da entropia, o que literalmente implica que parte da energia cinética inicial que fora transformada em energia térmica mediante este trabalho, uma vez integrado à energia interna do sistema, torna-se permanentemente indisponível à realização de qualquer outro trabalho, nunca mais "reaparecendo" em forma de energia cinética no mundo macroscópico.
A parcela de energia térmica associada ao aumento da entropia é literalmente e definitivamente "perdida" para as "entranhas" do sistema. Mesmo em uma máquina térmica - especialmente projetada para fazer a transformação inversa, realizar trabalho às expensas de calor - esta parcela de energia não poderá mais ser convertida em energia cinética mensurável; mas ela ainda encontra-se lá, presa dentro do sistema (e "mensurável" em uma escala microscópica).
Nesta escala, onde valem as leis da termodinâmica, definir "energia" como a capacidade de realizar trabalho mostra-se "delicado" de ser feito, portanto.
Energia cinética translacional
Retomando-se aos casos associados ao centro de massa - quer macroscópicos que no caso de uma partícula - a energia cinética é calculada no âmbito da física clássica, para o caso translacional, por:
,
= massa do corpo.
= velocidade do centro de massa do corpo.
Resolvendo-se o produto escalar, em termos do módulo da velocidade , esta expressão traduz-se por:
Isto significa que quanto mais rápido um dado objeto se move maior é a quantidade de energia cinética que o mesmo possui. Além disso, quanto mais massivo for o objeto, maior será a quantidade de energia cinética presente quando este estiver se movendo a uma dada velocidade.
Para uma partícula puntual, mesmo microscópica, se a velocidade em consideração for a velocidade desta em relação à origem do referencial adotado, o que geralmente o é, a expressão acima representa a energia cinética total que esta possui. Entretanto, para corpos extensos (com dimensões), além de transladar este pode girar, e a energia cinética conforme calculada acima constitui-se apenas em uma parcela da sua energia cinética macroscópica total.
Para que algo se mova é necessário transformar qualquer outro tipo de energia em energia cinética. As máquinas mecânicas - automóveis, tornos, bate-estacas ou quaisquer outras máquinas motorizadas - transformam algum tipo de energia, geralmente previamente armazenada na forma de alguma energia potencial, em energia cinética.
Para variar-se a energia cinética total de um objeto necessita-se realizar sobre o mesmo um trabalho. Isto traz à luz o teorema do trabalho - variação da energia cinética, que afirma a igualdade entre os valores do trabalho realizado e a variação da energia cinética apresentada pelo corpo.
Relembrando mais uma vez, vale ressaltar que a energia cinética, assim como a energia potencial, não é absoluta. A energia cinética de um corpo é dependente do referencial adotado para fazer-se a medida da velocidade deste corpo. Isto decorre diretamente da relatividade do movimento [Nota 11]
No âmbito de outras teorias para a dinâmica mais abrangentes, a energia cinética pode ser definida por uma expressão bem diferente da encontrada no escopo da mecânica clássica. A exemplo, a energia cinética de uma partícula com massa de repouso m0 que se move com uma velocidade v é definida, no âmbito da relatividade especial, por:
O autor é remetido ao estudo das respectivas teorias para maiores detalhes, se necessário.
Energia cinética rotacional
O Radiômetro de Crookes.Também conhecido como o moinho de luz ou motor solar, consiste de um bulbo de vidro hermeticamente fechado, contendo um vácuo parcial. Dentro há um conjunto de palhetas que são montadas sobre um eixo de forma a poderem girar livremente. A hélice gira quando expostas à luz, em um claro processo de conversão da energia radiante em energia cinética rotacional. A explicação detalhada para o processo que leva à rotação tem sido a causa de muito debate científico, entretanto.
A chamada energia rotacional é simplesmente a energia cinética associada a um corpo material extenso (ou não) que executa um movimento de rotação em torno de um eixo de referência que pode ou não atravessá-lo, sem que este entretanto translade (o eixo é fixo no referencial adotado, e passa pois pelo centro de massa do corpo). É determinada a partir da soma - da integral - da energia cinética que cada pedacinho de massa em que se pode dividi-lo tem devido à rotação, sendo esta integral feita ao longo de todo o corpo. Repare que um pedacinho do corpo, quando próximo ao eixo de rotação, tem energia cinética menor pois move-se também com velocidade tangencial menor se comparado a um pedacinho similar que encontre-se situado longe do eixo de rotação. Em termos de mecânica rotacional, esta integral, ao ser realiza, resulta em:
onde I representa o momento de inércia [Nota 13] deste corpo em relação ao eixo em questão e representa a velocidade angular do corpo em relação ao mesmo eixo.
Ao passo que para variar-se a energia cinética de translação necessitamos de uma força que realize um trabalho, para variar-se a energia de rotação esta força deve também prover um torque, e através dele também realizar trabalho.
Energia cinética total
A energia cinética total de um corpo extenso que além de rotacionar também translada, a exemplo uma esfera que rola sobre um plano inclinado sem escorregar, ou mesmo uma roda de bicicleta movendo-se em contato com o solo, é dada pela sua energia cinética de rotação em torno do eixo de rotação mais a energia cinética a ele associada devido à translação deste eixo:onde m representa a massa total do corpo, v a velocidade de translação do centro de massa do sistema, a velocidade angular do sistema em torno do eixo de rotação - que passa pelo centro de massa do sistema - e I o momento de inércia do corpo em torno do eixo em consideração.
O teorema do trabalho - variação da energia cinética aplica-se à energia total de um corpo.
Cargas elétricas em movimento
Quando cargas elétricas são colocadas em movimento de forma a estabelecer uma corrente elétrica, esta produz ao seu redor um campo magnético. Correntes constantes mantém o campo constante, e há uma energia associada a este campo, podendo esta ser chamada de energia magnética. A energia magnética não pode ser descrita através de uma "energia potencial magnética" conforme ocorre para o caso da energia elétrica porque o campo magnético não é um campo conservativo. Mesmo o processo de variação da energia magnética envolve um processo elétrico - o princípio da indução eletromagnética -, não havendo mecanismos unicamente magnéticos capazes de descrevê-lo.Conclui-se que uma partícula carregada em movimento possui uma quantidade de energia extra armazenada no campo magnético e não apenas a energia cinética associada à sua massa em movimento.
O leitor é remetido ao estudo da magnetostática e do eletromagnetismo para maiores detalhes [Ref. 12] [Nota 14].
Energia mecânica
Com o atrito do ar sendo desprezível a energia mecânica da bola durante o voo - a soma de sua energia cinética com sua energia potencial gravitacional - se conserva. Durante a colisão com o solo, mesmo considerado que a energia potencial elástica associada à deformação da bola inclui-se como parcela na energia mecânica desta, há atrito e parte desta energia é dissipada na forma de energia térmica (e outras). Após cada colisão a energia mecânica da bola é menor.No âmbito da mecânica clássica, a energia mecânica de um sistema discreto de partículas ou corpos extensos é a soma de todas as energias potenciais associadas às interações conservativas entre os corpos ou partículas em consideração, e de todas as energias cinéticas destes corpos ou partículas, incluídas as energias cinéticas de rotação, se aplicável.
Contudo, no âmbito da física estatística, ao se estudarem os sistemas termodinâmicos - a saber, a matéria - o conceito de energia mecânica, quando aplicado microscopicamente às partículas fundamentais que constituem um corpo material - suposto macroscopicamente estático no referencial adotado - leva diretamente ao conceito de energia interna de um sistema, corespondendo esta à soma de duas parcelas: a energia térmica - atrelada diretamente à soma das energias cinéticas das partículas em escala microscópica e à temperatura absoluta do sistema - e a energia química, parcela correspondente à soma da(s) energia(s) potencial(is) devidas às interações - neste caso sempre conservativas - entre as partículas do sistema, a destacar-se de longe nessa escala a interação elétrica entre elétrons e núcleos, entre átomos, entre moléculas, etc. [Nota 15].
A energia mecânica "EM" que um único corpo possui é a soma da sua energia cinética "Ec" com a(s) energia(s) potencial(is) à(s) qual(is) se sujeita em virtude de campos externos.
Se o sistema for conservativo, ou seja, apenas forças conservativas atuam sobre ele, a energia mecânica total se conserva e é uma constante de movimento.
O atrito não é uma força conservativa. Sistema sujeitos a atrito têm sua energia mecânica afetada pelo mesmo.
Massa
Ver artigo principal: massa
Com o desenvolvimento da física moderna
verficou-se, a partir dos resultados oriundos tanto da física quântica
quanto da física relativística, que massa e energia são intercambiáveis,
podendo ser convertidas uma na outra mediante processos físicos hoje
bem-estabelecidos. A equivalência entre energia e massa é expressa
através da mundialmente conhecida equação E=mc2, proposta por Einstein ainda quando da publicação da relatividade especial.A conversão de massa em energia encontra-se diretamente ligada à energia nuclear, pois em reações nucleares altamente exoenergéticas, como a fissão do urânio ou a fusão do hidrogênio, verifica-se que a soma das massas dos produtos formados é menor do que a soma das massas dos reagentes, sendo a diferença inteiramente convertida em energia e liberada no processo. Processo que envolvem a criação de pares, como o que dá origem a um pósitron e a um elétron a partir de energia pura (energia radiante), ou a aniquilação destes, com a liberação da energia associada, são muito comuns em física de partículas [Ref. 3].
Fatos experimentais que explicitam a conversão de massa em energia e energia em massa como processos naturais trazem à tona um problema com duas leis de conservação encontradas no âmbito da mecânica clássica de formas completamente separadas: a lei da conservação de massas e a lei da conservação da energia (em sua forma clássica). Certamente a conversão entre massa em energia leva à violação de tais leis. Contudo ressalta-se que no mundo clássico, aquele acessível aos nossos sentidos, no qual nos preocupamos com as reações químicas mas não com as nucleares, a quantidade de massa que converte-se em energia ou vice-versa é imperceptível aos melhores equipamentos: no mundo clássico massa e energia se conservam de fora separada. Em física de altas energias, contudo, não há lei de conservação de massa. Há apenas lei da conservação da energia em sua forma abrangente [Nota 16], e a massa figura nesta lei mediante a famosa equação de Einstein, sendo tratada como uma forma de energia.
A relação entre massa e energia encontra-se evidente na relatividade aos considerarmos a expressão: "A energia tem inércia". Decorre que ao aumentar-se a energia de um sistema, aumenta-se também a sua inércia ao responder a forças aplicadas, ou seja, a sua massa. Repare que não há a necessidade explícita de conversão de energia em massa de repouso, e dizer que a massa aumentou não significa necessariamente que matéria surgiu dentro do sistema. Há assim uma clara distinção entre massa [Nota 17] e massa de repouso.
A massa de repouso de uma partícula em velocidade próxima à da luz, digamos, a de um elétron, continua a mesma, mas ao se tentar aumentar a velocidade deste, digamos, em um cíclotron, verifica-se que este se comporta como se tivesse uma massa muito maior do que a sua massa de repouso.
Quanto mais próximo este encontrar-se da velocidade da luz, maior será sua inércia, ou seja, sua massa, pois também maior é a sua energia cinética (aqui, necessariamente relativística), e o que é mais importante, maior será a quantidade de energia a ser acrescida para que este apresente uma mesma variação de velocidade. No limite em que este se move praticamente à velocidade da luz, sua massa é infinitamente grande, e uma quantidade de energia infinita teria que ser-lhe acrescida para fazê-lo finalmente chegar à velocidade da luz.
Energia radiante
Ver artigo principal: Ondas eletromagnéticas
As auroras, fenômeno que acontece também na Terra, são resultado da conversão de energia cinética associada ao vento solar em energia radiante, grande parte dela na faixa do visível. Partículas carregadas presentes no vento solar são direcionadas aos pólos em virtude do campo magnético do planeta em um processo conhecido por garrafa de van allen. A colisão destas partículas com átomos e moléculas dos gasesatmosféricos resulta na emissão de luzes que iluminam os céus junto aos pólos magnéticos.Trata-se de energia pura propagando-se pelo espaço em forma de ondas associadas a um campo. É, em vista do paradigma moderno, a energia diretamente associada à radiação eletromagnética: à luz, às ondas de rádio, aos raios infravermelhos, aos raios X, e outras.
A energia radiante atravessa perfeitamente o vácuo: a quase totalidade de energia que recebemos do sol chega até nós na forma de energia radiante distribuída em uma larga faixa de frequências, faixa esta que inclui a faixa do visível na região de maior densidade de energia, com as diversas cores (violeta, azul, verde, amarelo, laranja, vermelho) que conseguimos enxergar sendo particularmente intensas no espectro solar. Contudo o homem não se restringiu a usar apenas os olhos para vasculhar o cosmo; radiotelescópios observam o cosmos em comprimentos de onda que não podemos ver, indo desde as ondas de rádio até os raios X e mesmo raios cósmicos [Ref. 13] [Ref. 9].
As ondas eletromagnéticas são uma combinação de campos magnético e elétricos ortogonais variáveis que sustentam-se mutuamente mediante da lei da indução de Faraday e a Lei de Ampère em sua forma generalizada por Maxwell, possuindo, uma vez produzidas, existências independentes das cargas aceleradas que a geraram. Ressalta-se que "cargas estáticas e cargas em movimento com velocidade (vetorial) constante não irradiam. Cargas aceleradas irradiam." [Ref. 9].
Observe que, embora não irradiem ondas eletromagnéticas, cargas elétricas estáticas e cargas em movimento não acelerado possuem seus campos elétricos e no último caso também magnéticos associados, e nestes campos há energia armazenada. Contudo estes campos e estas energias estão "presos" à carga, e não propagando-se livremente pelo espaço, como ocorre com a energia nas ondas eletromagnéticas. Aos campos das cargas nestas condições associam-se a energia potencial elétrica e a "energia magnética" antes referida no subtópico "Cargas elétricas em movimento" dentro do "Energia cinética" deste artigo.
A energia transportada em uma onda eletromagnética é removida da carga acelerada mediante um fenômeno conhecido por reação à radiação (fórmula de Larmor)[Ref. 12]. Ondas eletromagnéticas não transportam apenas energia; transportam também momento. O fluxo de energia em uma onda eletromagnética é descrito pelo vetor de Poynting , cuja direção é perpendicular ao plano estabelecido pelos vetores campo elétrico e campo magnético , sendo obtido por:
onde representa a permeabilidade magnética do vácuo e "X" representa o produto vetorial.
Recursos energéticos
Energia solar
Ver artigo principal: Energia solar
O termo energia solar refere-se à toda energia que tem origem no sol, sendo em quase sua totalidade representada pela energia radiante emitida por este astro. Uma pequena parcela desta energia encontra-se associada à energia cinética transportadas pelo vento solar.O sol é a fonte primária de toda a energia que usamos na Terra excetuando-se a energia nuclear - com origem nos núcleos atômicos dos elementos, formado em estrelas antecedentes ao sol e que no processo de sua morte, liberaram ao espaço sideral o material que hoje encontramos aqui na Terra - e talvez parte da energia geotérmica - a parcela com origem na energia potencial gravitacional liberada no processo de agregação de matéria que formou o planeta e que, convertida em energia térmica, incandesceu a Terra durante sua infância. Ademais, da energia hidrelétrica à energia térmica liberada pela combustão de combustíveis fósseis e mesmo à energia química presente em uma pilha, todas remontam à energia solar em algum momento. É o sol que provê a energia necessária à evaporação da água, que, levada através de nuvens às elevadas altitudes, precipita-se na cabeceira dos rios. É o sol que provê a energia necessária à fotossíntese, sendo a fonte primária de toda a energia química armazenada nos seres vivos em virtude da cadeia alimentar, e nos combustíveis fósseis, destes derivados.
O termo energia solar, em escopo moderno, pode referir-se ao processo de captação de energia via placas solares, onde a energia radiante é diretamente convertida em energia elétrica, e também ao processo de aquecimento de água via coletores solares, o que evita gastos com a compra de energia elétrica a fim de aquecer-se água para o uso humano.
Energia elétrica
Ver artigo principal: Energia elétrica
A chamada energia elétrica nada mais é do que a energia potencial elétrica associada a um sistema onde uma determinada carga elétrica encontra-se situada não em um condutor elétrico
de referência - onde define-se a energia potencial desta como sendo
nula - mas em um segundo condutor de eletricidade que geralmente
acompanha o primeiro mas encontra-se deste isolado.
Esta carga, ao passar do fio onde se encontra para o fio de referência
libera a energia potencial a ela associada, sendo esta convertida em
energia térmica (em um chuveiro, via efeito joule), energia radiante (em um forno microondas), energia cinética (em um motor),
ou outra forma de energia qualquer no interior do componente que
permitiu sua passagem de um fio a outro. Explica-se assim porque as tomadas de energia têm sempre no mínimo [Nota 18] dois fios.Análise detalhada deste sistema leva-nos diretamente ao conceito de energia potencial elétrica já previamente considerado neste artigo e a uma área de estudos específica dentro da física: a análise de circuitos, esta sempre presente mesmo nos piores cursos de eletrônica. O leitor é remetido aos tópicos específicos para maiores detalhes.
Energia hidrelétrica
Ver artigo principal: Energia hidrelétrica
Hidrelétrica de Tucuruí. Observe o desnível dos espelhos d'água de um lado e do outro da barragem. Em uma hidrelétrica a energia potencial gravitacional da água é inicialmente convertida em energia cinética de translação da água, posteriormente em energia cinética de rotação da turbina, e posteriormente em energia potencial elétrica, já no gerador. Como a eficiência nestes processo de transformação nunca é 100%, apenas uma parcela da energia inicialmente armazenada na forma potencial gravitacional acaba convertida em potencial elétrica. Uma parcela acaba sempre transformada em energia térmica.
A energia hidrelétrica é a energia que vem do movimento das águas, usando o potencial hidráulico de um rio de níveis naturais,queda d'água naturais ou artificiais. Essa energia é a segunda maior fonte de eletricidade do mundo. Frequentemente constroem-se represas que reprimem o curso da água, fazendo com que ela se acumule em um reservatório denominado barragem. Toda a energia elétrica gerada dessa maneira é levada por cabos, dos terminais do gerador elétrico até os transformadores elétricos e então ao usuário final. A energia hidrelétrica apresenta certos problemas, como consequências socioambientais de alagamentos de grandes áreas, alteração do clima, fauna e flora locais, dentre outros. Entretanto ainda é, se comparado a outras, uma forma limpa de se gerar energia para o consumo humano.
Energia hidrelétrica no Brasil: devido à sua enorme quantidade de rios, a maior parte da energia elétrica disponível é proveniente de grandes usinas hidrelétricas. A energia primária de uma hidrelétrica é a energia potencial gravitacional da água contida numa represa elevada. Antes de se tornar energia elétrica, a energia primária deve ser convertida em energia cinética de translação da água e posteriormente em energia cinética de rotação no gerador elétrico. O dispositivo que realiza esta última transformação é a turbina. Ela consiste basicamente em uma roda dotada de pás, que é posta em rápida rotação ao receber o impulso da massa de água. O último elemento dessa cadeia de transformações é o gerador, que converte o movimento rotatório da turbina em energia potencial elétrica.
Energia química
Ver artigo principal: Energia química
Um foguete espacial possui uma grande quantidade de energia química armazenada no combustível, pronta para ser utilizada enquanto este espera na rampa de lançamento. Quando o combustível é queimado, esta energia é transformada em energia térmica, e parte dela é novamente transformada em energia cinética associada aos gases expelidos e ao foguete. Os gases de escape produzidos, ao serem impelidos para baixo, impelem o foguete para cima.É o nome da energia que está armazenada nas ligações covalentes, iônicas, metálicas, ou de forma similar em qualquer das ligações responsáveis pela estrutura da matéria conforme a concebemos hoje. Em essência é a energia potencial elétrica [Nota 19] associada às posições relativas dos elétrons nos orbitais eletrônicos (dos elétrons - negativos) e dos núcleos atômicos (positivos) uns em relação aos outros, recebendo este nome em particular apenas para enfatizar a ordem de grandeza e as partículas constituintes do sistema em estudo, composto por átomos, moléculas e/ou íons em interação, que pode ser liberada ou armazenada mediante reações químicas.
Em uma reação química os núcleos alteram suas posições uns em relações aos outros, bem como os orbitais eletrônicos presentes nas eletrosferas atômicas também o fazem, sobretudo os orbitais associados à última camada eletrônica de cada átomo, na conhecida camada de valência. Este rearranjo pode levar a uma configuração espacial final com uma energia potencial maior do que na configuração inicial -no caso das reações endoenergéticas - ou a uma configuração espacial com menor energia potencial elétrica em relação à inicial, caso em que a diferença é geralmente convertida em energia térmica - o que aumenta a temperatura do sistema - e posteriormente liberada às vizinhanças do sistema, devido ao aumento de temperatura, na forma de calor.
Assim existem ligações as quais se associa grande quantidade de energia química e ligações as quais se associa uma quantidade bem menor de energia química. A água é um exemplo de molécula com ligações H-O, pobres em energia química se comparadas às ligações H-H e O=O. A reação entre H2 e O2 leva a uma reestruturação espacial na qual parte da energia química dos reagentes é liberada: a formação de vapor de água a partir dos gases reagentes é em verdade uma reação exoenergética explosiva.
Em biologia
De importância dentro da biologia destaca-se não só a água como a glicose, rica em ligações H-C e outras, que se comparadas à ligações C=O presente no CO2 e H-O presente na água, possuem maior energia química associada. Ao passo que a síntese da glicose a partir do CO2 e H2O é portanto uma reação endoenergética, sendo realizada no processo de fotossíntese nas plantas às expensas da energia radiante recebida do sol, a combustão da glicose, representada pelo processo inverso, constitui a principal fonte de energia dos seres vivos aeróbicos.Os seres vivos aeróbicos utilizam a glicose como principal combustível (fonte de energia química); entretanto, esta molécula não pode ser utilizada diretamente, pois sua quebra direta libera de forma imediata muito mais energia que o necessário para o trabalho celular. Uma tora de madeira a arder em chamas é uma amostra desta capacidade de conversão de energia. Por isso a natureza selecionou mecanismos mais controlados, que incluem a transferência da energia química da glicose para moléculas tipo ATP (adenosina trifosfato) antes de seu uso final. Nos primeiros seres vivos a habitarem o planeta surgiu o primeiro destes mecanismos com tal objetivo: a fermentação. A fermentação anaeróbia, além do ATP, gera também etanol e dióxido de carbono (CO2). A presença de CO2 na atmosfera possibilitou o surgimento da fotossíntese.
Este processo fez surgir o O2 (oxigênio) na atmosfera. Com o oxigênio, outros seres vivos puderam desenvolver um novo mecanismo de transferência de energia química da glicose para o ATP: a respiração aeróbica. Ao longa da história do planeta a mudança na atmosfera, ao tornar-se rica em O2, foi responsável por propiciar uma explosão na diversidade de seres a utilizarem a respiração aeróbica como mecanismo de obtenção de energia; este período da evolução ficou conhecido nos anais da biologia por explosão cambriana.
Nos organismo biológicos a energia química pode ser diretamente transformada em energia cinética (nos músculos) ou térmica, sendo esta de grande importância para os organismos homeotérmicos.
Eletroquímica
A energia química pode ser transformada diretamente em outras formas de energia que não é térmica, por exemplo em eletricidade (nas baterias ou nas células de hidrogênio em automóveis modernos). Há uma área da química especialmente destinada a este estudo, a eletroquímica.Combustíveis
O petróleo e demais combustíveis fósseis como o carvão mineral têm relevância inegável na modernidade. Representam uma considerável parcela da matriz energética em nossa sociedade atual, e constituem motivo de preocupação, entre outros, por não serem renováveis. Há ainda o problema do aquecimento global, diretamente relacionado aos mesmos. A busca de combustíveis alternativos, como o etanol, evidencia a importância dos combustíveis em nossa sociedade, assim como a importância dos problemas associados à sua produção, distribuição e consumo.Energia eólica
Ver artigo principal: Energia eólica
A energia eólica tem sido aproveitada desde a antiguidade para mover
os barcos impulsionados por velas ou para fazer funcionar a engrenagem
de moinhos, ao mover as suas pás. Nos moinhos de vento a energia eólica
era transformada em energia mecânica, utilizada na moagem de grãos ou
para bombear água. Os moinhos foram usados para fabricação de farinhas e
ainda para drenagem de canais, sobretudo nos Países Baixos.Na atualidade utiliza-se a energia eólica para mover aerogeradores - grandes turbinas colocadas em lugares de muito vento. Essas turbinas têm a forma de um catavento ou um moinho. Esse movimento, através de um gerador, produz energia elétrica.
A energia eólica vem gradualmente ganhando importância em vista das preocupações modernas no que refere-se a fontes de energias limpas e renováveis.
O auto é remetido ao artigo principal para maiores detalhes.
Energia nuclear
Ver artigo principal: Energia nuclear
Planta de uma usina elétrica termonuclear em funcionamento.A reação nuclear que ocorre no núcleo do reator abastecido com alguns quilogramas de material reativoconverte uma quantidade enorme de energia nuclear em energia térmica a cada segundo. Parte desta energia térmica é convertida em energia mecânica nas turbinas, e posteriormente em energia elétrica. Outra parcela é necessariamenteentregue à uma fonte fria, neste caso ao ambiente mediante a dissipação de vapor d'água aquecido expelido nas chaminés. Mesmo dissipando toda esta energia a cada segundo, um reator pode trabalhar por volta de 30 anos sem ser reabastecido.
Conforme visto, a energia potencial nuclear é a energia potencial associada à posição relativa dos nucleôns uns em relação aos outros em virtude da interação nuclear forte que os mantém unidos no núcleo.
A variação da energia potencial nuclear durante o processos de reação nuclear em um átomo é geralmente enorme se comparada às variações de energia química encontradas quando este mesmo átomo participa de reações químicas as mais exoenergéticas (da ordem de centenas a milhares de vezes maior)[Nota 20]. Os processos nucleares que liberam energia são assim extremamente exoenergéticos, e pequenas quantidades de material reativo podem liberar quantidades astronômicas de energia.
As reações nucleares exoenergéticas são geralmente a fissão de átomos com grandes núcleos (onde destacam-se como elemento natural os isótopos do urânio e como elemento já artificial os isótopos do plutônio) ou a fusão de átomos com núcleos pouco massivos (com destaque para os isótopos do hidrogênio). Até os dias de hoje, embora haja considerável pesquisa associada ao processo de fusão, apenas a energia liberada através dos processos de fissão é praticamente utilizável. A energia que liberam é transformada sobretudo em energia cinética presente nas radiações alfa ou beta, em energia radiante associada à radiações gama e em energia térmica que eleva de forma considerável a temperatura da amostra em reação, podendo facilmente vir a fundi-la em processos ainda longe do crítico (explosivo). Sob controle em um reator nuclear, esta energia térmica liberada pode ser convertida em energia elétrica mediante emprego da mesma tecnologia usada nas termoelétricas: muda-se apenas a fonte de energia primária, que passa a ser o reator nuclear ao invés da fornalha química). Sem controle, uma pequena quantidade de material reativo podem gerar uma explosão monumental, o que, levado a cabo, deu origem às ditas armas nucleares.
Em termos históricos, o domínio do processo de fusão é posterior ao domínio do processo de fissão atômica, pois precisa-se da energia liberada na fissão para iniciar-se o processo de fusão, pelo menos aqui na Terra. A energia que recebemos do sol tem sua origem no processo de fusão nuclear de átomos de hidrogênio, constantemente convertidos em hélio no núcleo desta estrela, sendo este processo também extremamente exoenergético se comparado a uma reação química convencional. Isto justifica em parte o maior poder destrutivo de uma bomba nuclear de hidrogênio (bomba H) tendo em vista a facilidade de obtenção de seus isótopos deutério e trítio se comparada à dificuldade de obtenção de U235 a exemplo [Nota 21]. O processo de fissão nuclear do urânio, descoberta em 1939 pelos cientistas alemães Otto Hahn, Lise Meitner e Fritz Strassmann ao bombardearem átomos de urânio com nêutrons mediante a observação de que estes então se dividiam em dois fragmentos, na maioria dos casos em estrôncio e xenônio ou em criptônio e bário, com liberação de mais dois ou três nêutrons energéticos, não teria saído dos limites estritos do laboratório se não fosse pelo fato de que neste processo há também a liberação de uma grande quantidade de calor facilmente mensurável. Decorreram-se apenas cinco anos entre a descoberta da fissão nuclear do urânio e a explosão da arma nuclear Trinity, que antecedeu em dias apenas as explosões nucleares de Hiroshima eNagasaki.
Notas
- ↑ Em vista da relatividade não se pode esquecer da equivalência entre massa e energia. A lei da conservação da energia, em contexto geral, encerra, pois, em si, as duas leis clássicas associadas: a da conservação da massa e a da conservação da energia (clássica). No contexto geral, massa é tratada como se energia o fosse.
- ↑ A variação da temperatura em um gás monoatômico ideal, a exemplo.
- ↑ Em uma reação química, a exemplo.
- ↑ Os gases expelidos pelo foguete e o foguete, ou mesmo o satélite sendo colocado em órbita terrestre e a Terra, a exemplo
- ↑ O leitor é alertado para não confundir (quilo)watt-hora, uma unidade de energia, com (quilo)watt, unidade de potência. Alerta-se também que, em verdade, as unidades são o watt-hora e o watt, respectivamente. O prefixo quilo representa mil unidades, sendo 1kWh = 1000Wh.
- ↑ Não confundir os termos potencial elétrico e energia potencial elétrica. Apesar de interligados, têm definições distintas: potencial elétrico é propriedade de um ponto do espaço - no caso sob influência da carga Q - quer encontra-se ali presente a carga de prova q, quer não; já energia potencial elétrica é propriedade de um sistema formado por pelo menos duas cargas elétricas Q e q. Tem-se que Ep.elétrica = V.q, ou seja, o potencial no ponto é definido pela razão entre a energia potencial que uma carga q (ou massa m) de prova qualquer terá se colocada naquele ponto e o valor desta carga (ou massa) de prova: V = Ep.elétrica / q . De forma similar, entretanto, ambos os conceitos dependem de um ponto de referência para o qual Ep. elétrica e V sejam zero joules e zero volts, respectivamente. Para o caso elétrico puntual considerado a configuração de energia potencial nula é quase sempre escolhida como sendo a configuração de duas cargas infinitamente distantes uma da outra. O potencial de zero volt é assim atribuído a um ponto infinitamente distante da(s) carga(s) fonte, Q no caso.
- ↑ 1MeV são mil elétrons-vol (eV). Trata-se de uma unidade de energia alternativa ao joule, muito comum em física de altas energias (física de partículas)
- ↑ nucleôn é uma denominação utilizada para designar qualquer das partículas que integram o núcleo atômico, seja ela um próton ou um nêutron
- ↑ É sabido que nucleôns conseguem escapar do potencial confinante do núcleo, ocorrendo inclusive liberação de energia no processo. Entretanto efeitos quânticos interessantes têm que ser levados em conta ao estudar-se tal fenômeno, entre eles o efeito túnel. Como estes fogem ao escopo deste artigo, o leitor é remetido ao estudo da radioatividade para maiores detalhes, em particular ao estudo das radiações alfa e beta. O caso da fissão e fusão nuclear são também casos interessante a se estudar no contexto atual. Uma sugestão para uma introdução ao assunto é o livro do Dr. Robert Eisberg apresentado como referência nesta seção. O capítulo 16 intitula-se "Decaimentos nucleares e reações nucleares".
- ↑ Energia coulombiana é a mesma energia potencial elétrica, no caso a energia potencial elétrica associada à proximidade dos dois prótons. O nome decorre da Lei de Coulomb, a equação base no estudo da eletrostática, e do cientista Charles Augustin de Coulomb, que a elaborou.
- ↑ Apesar dos valores absolutos tanto da energia cinética como da energia potencial serem dependentes do referencial escolhido para a medida, em qualquer referencial o princípio da conservação da energia é sempre válido.
- ↑ Para esta demonstração, e para uma razoável introdução à relatividade restrita, consulte Eisberg, Robert; Resnick, Robert - Física Quântica , Átomos, Moléculas, Sólidos, Núcleos e Partículas- 13ª edição - Editora Campus - Rio de Janeiro - ISBN: 85-7001-309-4 - (Apêndice A - pág. 829)
- ↑ Uma tabela com os momentos de inércia para os principais corpos rígidos simétricos, a saber o aro, o anel, o cilindro maciço, o disco, o bastão (haste fina), a esfera (maciça ou oca) e da lâmina retangular pode ser encontrada em Resnick; Halliday; Krane - Física 1 - página 234 (vide referências)
- ↑ Para maiores detalhes sobre a energia associada ao campo magnético consulte: Griffiths, David J. - Introduction to Eletrodynamics - Third Edition (pag. 317)
- ↑ Em princípio, qualquer parcela de energia potencial entre as partículas deve ser considerada. Contudo, a energia potencial gravitacional associada à interação entre moléculas é desprezível nessa escala se comparada à energia potencial elétrica, o mesmo valendo para outras energias, como a atrelada a campos magnéticos. Para mais detalhes, vide seção "Energia Química"
- ↑ Esta lei é muitas vezes referida por lei da conservação da massa-energia
- ↑ O conceito de "massa relativística" é contudo algo muito delicado. O leitor é remetido ao artigo principal da wikipédia sobre o assunto para maiores esclarecimentos
- ↑ Em verdade as tomadas, segundo a norma, têm que ter três fios. O terceiro é o fio terra, essencial à proteção do usuário mas não ao funcionamento em si do aparelho.
- ↑ A rigor, mesmo não podendo ser expressa em termos de energia potencial, a energia magnética presente nos átomos também deve ser considerada uma vez que constitui-se em energia armazenada, podendo ser transformada. Esta parcela pode mostrar-se importante particularmente em reações envolvendo substâncias ferromagnéticas e antiferromagnétcias ou mesmo com histerese acentuada. Nas situações experimentais as variações nestas energias não aparecem explicitamente, entretanto, sendo "embutidas" junto às variações da energia potencial elétrica conforme definição estrita desta- sendo ao fim ambas consideradas como uma só "energia potencial elétrica".
- ↑ Pequena consideração pode ser feita também a respeito da energia associada à interação elétrica que tende a separar os prótons ali confinados, sendo esta ordens de grandeza menos que a nuclear forte, entretanto
- ↑ A mais poderosa bomba já detonada, a bomba Tsar, liberou uma energia de 57 mil quilotons. Para comparação, a bomba nuclear de Nagasaki liberou uma energia de apenas 20 quilotons, suficiente entretanto para aniquilar a cidade.
Bioenergia sob o ponto de vista da Bioenergologia, Teosofia, Espiritualismo, Espiritismo, Yoga, Hinduísmo, Parapsicologia, Projeciologia e etc.:
Conclusões e estudos da relativas ao Universo e a Natureza. Elementos e energias dos planos naturais (chakras e vórtices da Natureza); O Ser Humano: energias cibernéticas e bioelétricas relacionadas com o sistema nervoso e os diferentes órgãos; Deduções científicas do campo energético e humana; Campo bioplásmico: campo etérico; Chakras e a anatomia humana – Pesquisa sobre psicotrônica e as distribuiçôes de energias; Patologias energéticas.
"ISTO É O HOMEM, UM SER DE ENERGIA NUMA GALÁXIA DE ENERGIAS, DINAMICAMENTE LIGADO A TODA A VIDA E ÀS FORÇAS DO UNIVERSO."
BIOENERGIA
A bioenergia
é a energprimordial do todo.
É o campo
onde tudo acontece. É a vi
Sempre o homem teve consciência da existência dessa energia e ao longo do tempo foi chamada de energia KI, energia vital, Prana, Mana, Munis, Magnale Magnum, Magnetismo animal, Força ódica, Raios-N, Força "X", Energia Orgoni, Aura, Éter, Psicossomática, Energia bioplasmatica , Energia Psicotronica, etc.
Desde os tempos primordiais o homem conhece essa energia que aparece como aureola na cabeça dos santos, está presente nas curas pela imposição das mãos, na benção dos velhos, pais e clérigos, na rabdoscopia, nos fenômenos psi-kapa, na telepatia, nas terapias alternativas como Do-In, acupuntura, Shiatsu, moscabustão , etc.
Hoje com a Kirleografia, fotografia da aura, podemos ver e estudar a Bioenergia e seus efeitos. Sabemos hoje que está ligada diretamente com a saúde física e mental dos seres vivos, e que toda e qualquer enfermidade antes mesmo de aparecer no corpo já pode ser detectada através do fluxo da bioenergia nesse corpo.
Das doenças oriundas do desequilíbrio da Bioenergia, a mais freqüente é o CÂNCER (wilhem Reich - A biopatia do câncer)
Corrigindo e equilibrando esse fluxo, conseguimos evitar a manifestação da doença.
A Bioenergia se manifesta em dois pólos opostos e complementares,YIN - YANG, (masculino feminino, quente frio, luz sombra, centrípeto centrifugo, etc. )
O campo Bioenergético é modulado pelas formas, de modo que todas as coisas adquirem uma potencialidade energética própria, obedecendo sempre os princípios da polarização.
Assim podemos caracterizar os alimentos em Yin ou Yang conforme sua forma, cor, sabor etc. (macrobiótica).
Toda as coisas portanto, tem sua polarização, conforme suas dimensões e formas, de modo que podem interferir por ressonância sobre os seres vivos, sendo assim benéficos ou não. conforme a potencialidade da sua polarização.
BIO-ENERGETICAPartindo desses princípios, foi construído o BIOGERADOR.
BIO-ENERG
Bioenergética
Por Ana Lucia Santana |
A Bioenergética trabalha com as energias da vida.
No Universo, tudo é constituído de energia, e no Homem esse elemento
está profundamente ligado à respiração, que por sua vez está conectada
com os processos que envolvem os movimentos da nossa musculatura. O ato
de respirar é o mais importante e essencial para a manifestação da vida
no ser humano. Logo ao nascer ele já se expressa no mundo através da
respiração, ativando todo o funcionamento do seu corpo.
Tudo que envolve a energia corporal se reflete na mente, da
mesma maneira que mobiliza os eventos que ocorrem no organismo físico.
Assim, as emoções incidem diretamente na forma como respiramos. Cada uma
produz um tipo de respiração diferente, e nos condicionamos desde a
infância a reprimir nossos sentimentos
diante das ameaças externas ou do que esperam de nós. Desta forma,
tensionamos os músculos e deixamos de nos expressar espontaneamente.
Quando crescemos, incorporamos esse tipo de comportamento e passamos a
dissimular o que sentimos.
A bioenergética é uma terapia que permite ao Homem reconectar-se com seu corpo, aproveitando ao máximo seu potencial. Ao se reencontrar consigo mesmo, nesta jornada de autoconhecimento, o indivíduo atinge o objetivo almejado, ou seja, ele liberta suas tensões agudas, permanentes, bem como suas emoções, sentimentos contidos, formas cristalizadas de ver o mundo, além de impulsionar o movimento imprescindível para a vida.
Na prática da bioenergética, o sujeito aprende a expressar o que sente através da respiração. Ao fortalecer, por exemplo, a respiração, os músculos se contraem, movimento condicionado que se manifesta na tentativa de conter um sentimento, do qual se perde o domínio, vindo assim à tona na forma de um pranto, de um grito, um sinal de temor ou uma risada. A seguir, a musculatura se solta, a pessoa respira com calma e ela é inundada por um sentimento de paz. Desta forma, deixando que suas emoções se revelem livremente, o Homem vê atitudes e sentimentos programados serem modificados.
A bioenergética permite, assim, a compreensão da forma de expressão corporal de cada um, por meio da prática de exercícios que aliam ações corporais, mentais e espirituais, com o objetivo de ajudar as pessoas a liberarem toda sua carga de prazer e alegria reprimida desde cedo. Assim, o ser humano pode finalmente exercitar sua forma de pensar, de agir, de sentir, com plena liberdade, conquistando uma melhor qualidade vital, mais sensibilidade, discernimento e coragem para lutar pelo que deseja, não pelo que esperam dele.
A eficácia das sessões de bioenergética depende da melhor comunicação entre o terapeuta e seu cliente. É necessário que este colabore intensamente com o processo, doando de si mesmo nesta terapêutica, pois o profissional pode apenas oferecer a ele um procedimento técnico, no qual é imprescindível a sua participação ativa. O terapeuta abordará a pessoa em tratamento com toques, massagens, exercícios direcionados para o stress muscular, alongamento e manifestação das emoções. Esta intervenção é progressiva, evoluindo à medida que o sujeito liberar suas energias.
Fontes
http://www.namaste-rio.com.br http://espacoanima.com/
A bioenergética é uma terapia que permite ao Homem reconectar-se com seu corpo, aproveitando ao máximo seu potencial. Ao se reencontrar consigo mesmo, nesta jornada de autoconhecimento, o indivíduo atinge o objetivo almejado, ou seja, ele liberta suas tensões agudas, permanentes, bem como suas emoções, sentimentos contidos, formas cristalizadas de ver o mundo, além de impulsionar o movimento imprescindível para a vida.
Na prática da bioenergética, o sujeito aprende a expressar o que sente através da respiração. Ao fortalecer, por exemplo, a respiração, os músculos se contraem, movimento condicionado que se manifesta na tentativa de conter um sentimento, do qual se perde o domínio, vindo assim à tona na forma de um pranto, de um grito, um sinal de temor ou uma risada. A seguir, a musculatura se solta, a pessoa respira com calma e ela é inundada por um sentimento de paz. Desta forma, deixando que suas emoções se revelem livremente, o Homem vê atitudes e sentimentos programados serem modificados.
A bioenergética permite, assim, a compreensão da forma de expressão corporal de cada um, por meio da prática de exercícios que aliam ações corporais, mentais e espirituais, com o objetivo de ajudar as pessoas a liberarem toda sua carga de prazer e alegria reprimida desde cedo. Assim, o ser humano pode finalmente exercitar sua forma de pensar, de agir, de sentir, com plena liberdade, conquistando uma melhor qualidade vital, mais sensibilidade, discernimento e coragem para lutar pelo que deseja, não pelo que esperam dele.
A eficácia das sessões de bioenergética depende da melhor comunicação entre o terapeuta e seu cliente. É necessário que este colabore intensamente com o processo, doando de si mesmo nesta terapêutica, pois o profissional pode apenas oferecer a ele um procedimento técnico, no qual é imprescindível a sua participação ativa. O terapeuta abordará a pessoa em tratamento com toques, massagens, exercícios direcionados para o stress muscular, alongamento e manifestação das emoções. Esta intervenção é progressiva, evoluindo à medida que o sujeito liberar suas energias.
Fontes
http://www.namaste-rio.com.br http://espacoanima.com/
Li-Sol-30
Fontes:
Wikipédia
Licença padrão do YouTube
http://institutobastos.com.br/abrath/artigos/bioenergia/
http://www.namaste-rio.com.br http://espacoanima.com/
Wikipédia
Licença padrão do YouTube
http://institutobastos.com.br/abrath/artigos/bioenergia/
http://www.namaste-rio.com.br http://espacoanima.com/
Sejam felizes todos os seres.Vivam em paz todos os seres.
Sejam abençoados todos os seres.
Nenhum comentário:
Postar um comentário